About 22,200 results
Open links in new tab
  1. scikit-learn: machine learning in Python — scikit-learn 1.7.2 …

    Simple and efficient tools for predictive data analysis Accessible to everybody, and reusable in various contexts Built on NumPy, SciPy, and matplotlib Open source, commercially usable - …

  2. Installing scikit-learn — scikit-learn 1.7.2 documentation

    The Debian/Ubuntu package is split in three different packages called python3-sklearn (python modules), python3-sklearn-lib (low-level implementations and bindings), python-sklearn-doc …

  3. Getting Started — scikit-learn 1.7.2 documentation

    >>> from sklearn.preprocessing import StandardScaler >>> X = [[0, 15], ... [1, -10]] >>> # scale data according to computed scaling values >>> StandardScaler().fit(X).transform(X) array([[ …

  4. User Guide — scikit-learn 1.7.2 documentation

    Jan 1, 2010 · Supervised learning- Linear Models- Ordinary Least Squares, Ridge regression and classification, Lasso, Multi-task Lasso, Elastic-Net, Multi-task Elastic-Net, Least Angle …

  5. API Reference — scikit-learn 1.7.2 documentation

    API Reference # This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the raw specifications of classes and functions may not be …

  6. Examples — scikit-learn 1.7.2 documentation

    Gaussian Process for Machine Learning # Examples concerning the sklearn.gaussian_process module.

  7. LinearRegression — scikit-learn 1.7.2 documentation

    Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see …

  8. SpectralClustering — scikit-learn 1.7.2 documentation

    See also sklearn.cluster.KMeans K-Means clustering. sklearn.cluster.DBSCAN Density-Based Spatial Clustering of Applications with Noise.

  9. KMeans — scikit-learn 1.7.2 documentation

    Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see …

  10. 2.3. Clustering — scikit-learn 1.7.2 documentation

    Clustering of unlabeled data can be performed with the module sklearn.cluster. Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters …